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Constraints, histones, and the 30-nm spiral

Roya Zandi and Joseph Rudnick
Department of Physics, UCLA, Box 951547, Los Angeles, California 90095-1547

~Received 22 March 2001; published 29 October 2001!

We investigate the mechanical stability of a segment of DNA wrapped around a histone in the nucleosome
configuration, under the assumption that the proper model for this packaging arrangement is that of an elastic
rod that is free to twist and that writhes subject to mechanical constraints. We find that the number of
constraints required to stabilize the nuclesome configuration is determined by the length of the segment, the
number of times the DNA wraps around the histone spool, and the specific constraints utilized. While it can be
shown that four constraints suffice, in principle, to insure stability of the nucleosome, a proper choice must be
made to guarantee the effectiveness of this minimal number. The optimal choice of constraints appears to bear
a relation to the existence of a spiral ridge on the surface of the histone octamer. The particular configuration
that we investigate is related to the 30-nm spiral, a higher-order organization of DNA in chromatin.
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I. INTRODUCTION

The issue of DNA packaging has been the subject of
tense research for the past forty years. The remarkable
that a meter of DNA~the total length of the human genom!
fits into a cell nucleus having a typical radius of a few m
crons, and that, thus packed, still manages to perform al
biological functions, has captured the attention and contin
to challenge the ingenuity of researchers. The fundame
unit of DNA packing in eukaryotes is the nucleosome@1,2#.
In the nucleosome configuration, a portion of the DN
strand wraps approximately one- and three-quarter tim
around a protein spool, known as a histone@3–5#. A string of
nucleosomes is believed to participate in the next higher
der of DNA packing by folding to form the so-called 30-n
fiber @6#. Even higher orders of organization have been c
jectured, but as yet there is nothing approaching a comp
understanding of the physical structure, at all orders, of
DNA in the cell nucleus. Indeed, the detailed oragnization
DNA and proteins in the 30-nm fiber is not entirely settl
@7–10#.

In this paper, our ultimate focus will be on a single n
cleosome. We will present a model for the action of histon
in nucleosomes. We treat the segment of DNA in a nucl
some as an elastic rod and apply an approach first devel
by Kirchhoff @11# to obtain the equilibrium configurations o
DNA in the absence of histones. We assess the stabilit
the elastic rod with respect to small deviations from the eq
librium configurations, and we find that all configuratio
that are not equivalent to a straight rod are unstable to fl
tuations. More specifically, all nontrivial equilibrium con
figurations represent saddle points in energy space. The
prove that the presence of histones provides a phys
mechanism by which more compact configurations of DN
are rendered stable against purely mechanical fluctuati
The specific mechanism is a set of constraints on the fl
tuations about mechanical equilibrium, which can be sim
modeled mathematically. The stability of the equilibriu
configuration is then framed in terms of the determinant
an n3n matrix, wheren is the number of constraints. O
special interest to us is the question of the most econom
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combination of constraints that serves to stabilize a giv
configuration. ‘‘Economy’’ in this case refers to the numb
of constraints required to accomplish stabilization. We
able to establish in the case of particular interest to us th
nucleosomelike configuration of DNA is rendered stable
four constraints, and that no fewer constraints will acco
plish this.

The conjecture that underlies the work reported here
that the portion of DNA that is wrapped around a histone
in a state of unstable mechanical equilibrium that is rende
mechanically stable by the constraints associated with
histone spool. There are reasons to believe that such a st
desirable. Imagine a pencil standing vertically on its poi
While this state will not persist in the absence of outs
influences, it can be sustained without application of subs
tial external forces. In fact, no force at all is required
guarantee the persistence of this state if the pencil is exa
vertical. By the same token, the removal of the constra
that keeps the vertically balanced pencil from toppling
accomplished at no energetic cost. Viewed in this way,
nucleosome configuration represents a highly efficient str
gem for the local packing of DNA, in that the histone spo
is introduced and removed with minimal expenditure of
sources.

Of course, because DNA is, in its ‘‘naked’’ state, high
charged, electrostatic interactions play an important role
the behavior of this molecule, bothin vitro and in vivo.
These interactions are, apparently, key to the condensatio
DNA in prokaryotes@12#. Furthermore, electrostatic interac
tions, highly screened though they may be, could be imp
tant contributors to the energetics of the DNA-histone int
actions. They are ignored in this work. Nevertheless,
elucidation of the stabilization of configurations within th
context of the purely elastic model of DNA ought to aid
the investigation of similar questions for DNA, subject to t
influence of additional interactions and degrees of freedo

An outline of the paper is as follows. In Sec. II the Ham
tonian governing configurations of DNA, modeled as a b
and twisted rod, is presented, along with the quadrature
lutions to the extremum equation for that Hamiltonian. Se
tion III reviews the formulation of linear stability analysis i
©2001 The American Physical Society18-1
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this case. A key result of the considerations outlined in t
section is that any nontrivial extremal configuration of be
and twisted DNA will be mechanically unstable if the stra
is long enough, and if there are no constraints on fluct
tions. This means that all extremum solutions for an infin
strand of bent and twisted DNA represent saddle points
the energy. Section IV introduces the notion of mechan
constraints, particularly those constraints associated with
requirement that the straight-line distance between
points on the DNA does not change as the segment flu
ates. The way in which this and other constraints are m
ematically implemented is discussed in this section, and
Appendix A. In Sec. V we address the issue of the numbe
constraints required to stabilize a section of bent and twis
rod against fluctuations about an extremum solution. We
that the minimum number of constraints needed to do thi
equal to the number of unstable eigenmodes of a fluctua
operator introduced in Sec. III. Section VI contains a disc
sion of the effects of a periodic array of constraints on
stability of an infinitely long section of a bent and twiste
rod. This discussion provides a leadin to our investigat
into the influences required to stabilize the nucleosomal c
figuration of DNA. It is also relevant to the stabilizing actio
of a protein armature on DNA in chromatin. Sections V
and VIII directly address the issue of the stabilization
DNA in the nucleosomal configuration. There are four u
stable modes in the case that we investigate. We find
four constraints suffice to counteract them. However, we a
find that those constraints must be chosen with care.
effective set reflects the known structure of histone, in p
ticular a spiral groove that has been identified. In our mod
this groove acts to limit the ability of the DNA wrappe
around it to slide parallel to the spool’s axis.

II. HAMILTONIAN AND EXTREMUM SOLUTIONS

The configuration of the twisted, writhing rod is chara
terized in terms of the Euler angles, depicted in Fig. 1. W
assume an isotropic rod, characterized by a bending mod
A and a torsional modulusC. The elastic energy of the rod
in terms of the Euler anglesu(s), f(s), andc(s), is given
by

Eelastic5E H A

2 F S du~s!

ds D 2

1sin2 u~s!S df~s!

ds D 2G
1

C

2 Fdc~s!

ds
1cosu~s!

df~s!

ds G2J ds. ~2.1!

FIG. 1. The Euler anglesu, f, andc.
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Here,s is the arclength along the rod. A way to determine t
equilibrium configurations of the rod is to supplementEelastic
with the term

Ec52FE cosu~s!ds. ~2.2!

This contribution can either be seen as a Lagrange multip
that enforces a given end-to-end distance, or as represe
the effect of tension on the rod.

Finally, in certain cases, an additional constraint guar
tees constancy of the end-to-end linking number. In the c
of a rod with clamped ends, this quantity is given by

Lk52
1

2pE S df~s!

ds
1

dc~s!

ds Dds. ~2.3!

Note that Eq.~2.3! is an integral over a perfect differentia
This reflects the topological character of the linking numb
A fixed linking number is enforced with the use of
Lagrange multiplier. The quantity to be minimized is, the
the combination

Eelastic1Ec2lLk. ~2.4!

As the linking number is not a quantity of interest here, w
ignore the final term in Eq.~2.4!.

The extremum equations have been extensively inve
gated@13#. They are identical to the equations for the beha
ior of the heavy symmetric top. The connection between
motion and the deformations of a thin rod was first noted
Kirchhoff in 1859 @11#, and is known as the ‘‘kinetic ana
logue’’ @14#. Those equations reduce to the following set
three:

df

ds
5

Jf2Jc cosu

A sin2 u
, ~2.5!

dc

ds
5

Jc

C
2

df

ds
cosu, ~2.6!

AA

2

du

ds
5A2

~Jf2Jc cosu!2

2A sin2 u
1E02F cosu.

~2.7!

The quantitiesJf , Jc , and E0 in the above equations ar
integration constants. The quadrature result for the angleu is
the result of the integration ofdEtot /du. Definingu[cosu,
the behavior of solutions can be extracted from the equa
for u:
8-2
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ds5
du

A2~12u2!

A
~E02Fu!2

1

A2
~Jf

2 1Jc
222JfJcu!

[
du

A2F

A
~u2a!~u2b!~u2c!

, ~2.8!

wherec,u,b,a. The characteristics of the solutions d
pend on the quantitiesa, b, andc. The property of solutions
have been completely investigated@15# for different values
of a, b, andc. We focus our attention on those configur
tions that have the same configurational form as a segme
DNA in a nucleosome. For specific value ofa, b, andc we
have obtained a solution that is depicted in Fig. 2. The rea
that we have made the choice of parameters above has
with the close visual relationship between the conformat
of the bend and twisted rod as displayed in Fig. 2 and
DNA in a commonly conjectured form of the 30-nm spir
@6#. We operate here under the assumption that this confi
ration is a reasonable representation of the organizatio
DNA in this component of chromatin.

FIG. 2. The solution to the equation that corresponds to
nucleosome configuration.
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III. STABILITY DETERMINATION

The stability of an extremum configuration is determin
by altering the configuration and calculating the change
the quantity that is extremized. In this case, the quantity
interest is the elastic energy. A stable solution is one t
minimizes the energy. If the quadratic effect of any sm
deviation from this solution is to lower the energy, then t
solution cannot represent stable equilibrium. Instead,
configuration is unstable; it is either a maximum energy c
figuration, or a configuration at a saddle point of the ener
In the case of the equations for the elastic energy of a twis
and bent rod, the second-order effect of second-order fl
tuations is obtained by taking second functional derivativ
of the expression in Eq.~2.1! with respect to the Euler angle
u, f, andc, and then by setting those Euler angles equa
their classical values. After a bit of reduction, we find th
the question of the stability of a classical configuration c
be framed in terms of the spectrum of the following opera
@16#

2
d2

ds2
1V~s!, ~3.1!

where

V~s!52
1

4

x~s!

@12u~s!2#2
1

1

2
u~s! ~3.2!

and

x~s!5@22u~s!#@12u~s!#2~a11!~b11!~c11!

1@21u~s!#@11u~s!#2~a21!~12b!~12c!.

~3.3!

Here,u(s) is the solution for cosu(s) displayed implicitly in
Eq. ~2.8!. If all eigenvalues of the operator~3.1! are positive,
then the solution to the classical equation is stable. If an
negative, then there are fluctuations that decrease the en
to a value below its classical value. Note that the operato
question resembles the Hamiltonian for a one-dimensio
particle in the potentialV(s). In Fig. 3, we display this po-
tential for the choice of parametersa, b, andc utilized in this
investigation. The potential, which has been displayed for

e

FIG. 3. The effective potential,V(s) in the operator in Eq.~3.1!.
The values ofa, b, andc are as given in Eqs.~8.1!, ~8.2!, and~8.3!.
8-3
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ROYA ZANDI AND JOSEPH RUDNICK PHYSICAL REVIEW E64 051918
extended range of the arclengths, has the form of the sort o
periodic potential encountered in discussions of electron
metals and semiconductors. As in this case, the eigenv
spectrum consists of bands of ‘‘allowed’’ states, separated
‘‘forbidden regions.’’ The question is whether all or part
any of the bands lie below zero. As it turns out, this is
deed, the case.

The reason for this is that one can identify a mode hav
an eigenvalue that isstrictly equal to zero—the translationa
mode, equal to the derivative with respect tos of the classi-
cal solutionucl(s). The existence of this mode follows from
the translational invariance of the extremum equations, an
is known to play a key role in, for instance, the question
tunneling between the false and the true vacuum in quant
field-theories@17#. The translational mode in this case is d
played in Fig. 4. Note that this mode is not spatially unifor
and, in particular, that it possesses nodes. On the bas
elementary considerations, one knows that there are,
result, solutions to the effective Schro¨dinger’s equation asso
ciated with lower—hence negative—eigenvalues. Figur
displays the band structure associated with the potentia
Fig. 3. In an infinitely long section of a twisted and bent r
that has taken the configuration pictured in Fig. 2, there is
infinitely large set of distortions that will lead to a lowerin
of the rod’s total elastic energy. In fact, the reasonable
pectation is that these distortions are a route to interwind

IV. THE SOURCES AND MATHEMATICAL
IMPLEMENTATION OF PHYSICAL CONSTRAINTS

Stabilization of the classical, or extremum configurati
can be achieved by the introduction of mechanical c

FIG. 4. The translational modeducl(s)/ds. Also shown, as a
dashed curve, is the effective potentialV(s), in the operator in Eq.
~3.1!.

FIG. 5. The spectrum of the potential shown in Fig. 3.
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straints. These constraints are expressed mathematical
the requirement that a property of the DNA’s configurati
does not change under distortions about the extremum s
tion. The physical constraint that a certain quantity be k
constant translates fairly straightforwardly into a set of ma
ematical conditions on the fluctuation spectrum. In tu
these mathematical restrictions lead to a reformulation of
method by which the fluctuation spectrum is determined. T
reasoning leading from physical constraints to a new
proach for the determination of effective eigenvalues of
linear fluctuation energy operator is presented in App
dix A.

Briefly, a constraint on the conformation of a bent a
twisted rod is expressed mathematically in terms of a con
tion of the form

E F„u~s!,f~s!,c~s!…ds5const. ~4.1!

Under the assumption that Eq.~4.1! is satisfied for the ex-
tremal configuration, one then expands to the first orde
deviations from the extremal forms ofu(s), f(s), andc(s).
As it turns out, the first-order corrections tof(s) andc(s)
are readily expressed in terms of the correction tou(s). This
is because of the simple way in which these two angles e
into the expression for the total energy in Eq.~2.1!. If we
denote byg(s) the displacement ofu(s) from its ‘‘classi-
cal’’ form, the general constraint equation~4.1! becomes

E f „ucl~s!,fcl~s!,ccl~s!…g~s!ds50, ~4.2!

where the subscript ‘‘cl’’ indicates that the quantity is a s
lution to the extremum equations.

For closed configurations, such constraints arise natur
from the preservation of the topology~i.e., linking number!
of the original configuration, and from the requirement th
the distorted rod continues to close smoothly on itself. He
such considerations do not necessarily apply, although
might imagine cases in which a ‘‘pinning’’ of the ends of
segment forbids any alteration of the linking number. Ne
ertheless, ‘‘boundary conditions’’ that result from physic
constraints on the end points of a given segment do give
to mathematical constraints on fluctuations about a gi
configuration. Whether or not boundary conditions will st
bilize a segment of bent and twisted rod against therm
driven fluctuations depends on the length of the segmen
the segment is short enough compared to the persist
length of the rod, such stabilization is possible.

Constraints may also be imposed as the result of phys
barriers. For example, imagine that the displacement ve
between two points on the bent and twisted rod is not
lowed to vary. One might imagine such a constraint be
enforced with the use of a stiff, inextensible ‘‘brace’’ firml
attached to the rod at the two points in question. This brac
then immobilized against rotations. The displacement vec
between the two points is represented as

R05 x̂x01 ŷy01 ẑz0 , ~4.3!
8-4
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where

x05E
s1

s2
sinu~s!cosf~s!ds, ~4.4!

y05E
s1

s2
sinu~s!sinf~s!ds, ~4.5!

z05E
s1

s2
cosu~s!ds. ~4.6!

The constancy of each component of this displacement
tor is ensured by a set of three constraints on the deviat
of the Euler angleu(s) from its extremum value. If we write

u~s!5ucl~s!5g~s!, ~4.7!

then the following three conditions hold:
~1! constancy of thex component of the displacemen

vector

dx5E
s1

s2H u~s!cosfcl~s!

1A F

2A

p1@12u~s!#21p2@11u~s!#2

@12u~s!2#3/2
Ix~s!J g~s!ds

50, ~4.8!

where the quantityIx(s) is given by

Ix~s!5E
s1

s
A12u~s8!2 sinfcl~s8!ds8; ~4.9!

~2! constancy of they component of the displacemen
vector

dy5E
s1

s2H u~s!sinfcl~s!

2A F

2A

p1@~12u~s!#21p2@11u~s!#2

@12u~s!2#3/2
Iy~s!J g~s!ds

50, ~4.10!

where

Iy~s!5E
s1

s
A12u~s8!2 cosfcl~s8!ds8; ~4.11!

~3! constancy of thez component of the displacement ve
tor

dz5E
s1

s2A12u~s!2g~s!ds50. ~4.12!

In the above relations

pS 12D[@~c61!~b61!~a61!#1/2. ~4.13!
05191
c-
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As an alternative to the above set of three constraints,
might imagine that the projection of the displacement vec
in a given direction is held constant, in which case the c
straint is a linear combination of those constraints:

x0dx1y0dy1z0dz50. ~4.14!

As an example of the use of this less restrictive constrain
fluctuations of the bent and twisted rod, imagine that
brace is allowed to rotate, but that it remains stiff and ine
tensible. Then the single constraint that holds is that the p
jection of the displacement vector along the original dire
tion of the brace is held fixed. Thus, physical constraints
the possible contortions of a strand of DNA transla
straightforwardly into mathematical constraints on the flu
tuations of that strand about its ‘‘classical’’ configurations

V. NUMBER OF CONSTRAINTS REQUIRED TO
STABILIZE A CONFIGURATION

It appears intuitively obvious that the stabilization of
given configuration, when there are a given number of
stable modes, requires the imposition of an equal numbe
constraints. It is fairly straightforwardly demonstrated tha
there aren unstable modes, then at leastn constraints are
required to stabilize them. To see that this is true, supp
that the operatorL has four negative eigenvalues. Als
imagine that three constraints have been imposed, of
form

^ f ux j&5E f ~x!x j~x!dx50 ~5.1!

for any fluctuationf (x). Here 1< j <3. The four eigenfunc-
tions having negative eigenvalues will bej i(x), with 1< i
<4. Let’s define

gi j [E j i~x!x j~x!dx. ~5.2!

Now, take a fluctuation that is of the form

f ~x!5(
i 51

4

aij i~x!. ~5.3!

The three constraint equations are of the form

(
i 51

4

aigi j 50. ~5.4!

These are three equations in the four unknownsai . We will
assume that not allgi j ’s are equal to zero for anyi. Then, it
is possible to set one of theai ’s equal to one. The equation
reduce to three linear, inhomogeneous, equations in th
unknowns. Unless there is some degeneracy, it will be p
sible to find a solution to those equations. This means th
function of the form~5.3! will obey the constraints. Further
more, the expectation value
8-5
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^ f uLu f &5E f ~x!L~x,x8! f ~x8!dx dx8 ~5.5!

will be given by

^ f uLu f &5(
i 51

4

ai
2l i . ~5.6!

Given that the fourl i ’s in the sum are all negative, we hav
a fluctuation for which the expectation value of the line
operatorL is negative.

It is, thus, clear that three constraints do not suffice
stabilize a classical configuration against fluctuation wh
there are four unstable modes. This conclusion genera
straightforwardly to the case ofn unstable modes andm
,n constraints. On the other hand,n constraints mayor may
not prove sufficient to guarantee stability. Consider, for e
ample, the case of a single instability. Let the unstable m
bej0(x). If the single constraint requires that all fluctuatio
be orthogonal tox(x), then the equation satisfied by th
eigenvaluesl of the constrained fluctuation operator is

(
i

F E j i~x!x~x!dxG2

l i2l
50. ~5.7!

It is straightforwardly verified that solutions of this equatio
lie between consecutive eigenvalues,l i of the unconstrained
fluctuation operator. Thus, the lowest allowed eigenvalue
the constrained operator lies above the lowest eigenvalu
the unconstrained system. However, it also lies below
next-lowest unconstrained-system eigenvalue.

To see that stabilization may or may not occur in th
case, we consider two particular subsets of the many pos
alternatives for the functionx(x). First, imagine thatx(x)
}j0(x). Then the constraint entirely eliminates the unsta
mode and stability is guaranteed. On the other hand, sup
that x(x)}j i(x) with iÞ0. Then, a stable mode is elim
nated, and the unrestrained unstable mode contributes t
fluctuation spectrum. The instability is entirely unaffected

VI. THE EFFECTS OF A PERIODIC
ARRAY OF CONSTRAINTS

In the case of DNA confined to the nucleus of a cell, it
widely conjectured that the packing of DNA is accomplish
with the use of a hierarchical organization of the long stra
that constitute the genome. Given that this organization
not be a mechanically stable structure, at least within
bent-and-twisted rod model of DNA, some constraini
mechanism is required. The histone spools provide one s
constraints, but these operate on the lowest level of org
zation. It is possible that a protein ‘‘armature’’ provides t
necessary stabilization at higher levels. Here, we discuss
implications of the kinds of mathematical constraints
fluctuations about unstable mechanical equilibrium that
can reasonably associate with the mechanical influenc
this mechanism for stabilization.

In this context, we focus on the case of a long strand
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distorted DNA, or, equivalently, a long section of the ben
and-twisted rod. Here, the set of fluctuations that lowers
energy of the unstabilized configuration is quite large. T
implies the need for a large number of constraints. When
strand is infinitely long, and the number of unstable m
chanical modes is infinite, then an infinite number of co
straints is required. We will look here at the stabilizing effe
of a periodic array of constraints.

The operatorL controlling the stability of the equilibrium
configuration of a long segment of the bent-and-twisted
has the form

2
d2

dx2
1V~x!, ~6.1!

where the potential termV(x), is periodic, in that

V~x1a!5V~x!. ~6.2!

According to Floquet’s theorem, the eigenfunctions of t
above operator are of the form

fn,k~x!5eikxCn,k~x!, ~6.3!

wherek, called the crystal momentum in solid-state physi
is confined to a Brillouin zone. The most convenient Br
louin zone for our purposes is2p/a<k,p/a. The function
Cn(x) is periodic inx, in that

Cn,k~x1a!5Cn,k~x!. ~6.4!

The integern is called the band index. The eigenvalue of th
eigenfunction is also indexed by the crystal momentum a
the band index, i.e.,En,k .

If a periodic array of constraints is imposed, in that w
require all fluctuations to be equal to zero atx5b1ma, with
m an integer and2`,m,`, then the requirement that th
determinant is equal to zero translates into the requirem
that the following product is equal to zero:

)
k52p/a

p/a

F~k!, ~6.5!

where

F~k!5(
n

uCn,k~b!u2

En,k2l
. ~6.6!

This tells us that for every value ofk, the lowest value ofl
corresponding to a fluctuation lies between the lowest va
of En,k , as a function of the band indexn and the next lowest
value of that eigenvalue. Suppose we impose two c
straints, by requiring that the fluctuations are zero atx5b1
1ma andx5b21ma. Then, the determinant will consist o
a product of terms of the form

(
na.nb

@Cna ,k~b1!Cnb ,k~b2!2Cna ,k~b2!Cnb ,k~b1!#2

~Ena ,k2l!~Enb ,k2l!
.

~6.7!
8-6
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CONSTRAINTS, HISTONES, AND THE 30-nm . . . PHYSICAL REVIEW E64 051918
In this case, it is possible that the lowest solution of t
characteristic equation will lie even higher than when ther
only one constraint per period.

As an indication of the effect of an array of constrain
we consider the case of the eigenstates of the ‘‘period
potential that is equal to zero everywhere. As is well know
one can imagine a one-dimensional Brillouin zone of fix
width. The dispersion relation can then be expressed in te
of a series of curves in which the ‘‘crystal momentum’’
restricted to this zone. There are no band gaps, but other
the bands are well behaved. Now, one is interested in
expectation values of the operator

L052d2/dx2. ~6.8!

Imagine that the lattice spacing is one, and take for the fu
tion to which fluctuations are orthogonal, a Gaussian of
form

x~x!5e2x2
. ~6.9!

The array of functions are copies of Eq.~6.9! centered abou
the pointsx561,62,63 . . . . The solution to the equatio
setting~6.5! equal to zero is graphed in Fig. 6. Also shown
that figure are the ‘‘bands’’ of the unconstrained operat
Note that the allowed values ofl for fixed crystal momen-
tum q, lie between successive bands. This is a general fea
of the array of constraints.

The effects of a pair of constraints in every period
illustrated in Fig. 7, where the values of thel for both one

FIG. 6. Alteration of the band structure as the result of a p
odic array of constraints. The dotted curves are the bands in
absence of constraints. The solid curves represent the influen
constraints.

FIG. 7. Alteration of the band structure as the result of a p
odic array of constraints, when there are two constraints per pe
Here the solid curve is the result forl(q) when there are two
constraints per period. The dashed curve represents the influen
one constraint, and the dotted curves are the bands in the absen
constraints. The solid curves represent the influence of constra
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and two constraints per period are compared with
l-versus-q relationship for the unconstrained operator.

This brings us to the way in which a physical armature,
the form of a protein scaffolding, can act to stabilize a no
trivially supercoiled DNA configuration. We imagine a con
figuration as depicted in Fig. 8. The contacts between
DNA and the armature will stabilize the DNA against flu
tuations.

VII. THE CASE OF A NUCLEOSOME: PRELIMINARIES

In the nucleosome configuration a segment of DNA wra
around a collection of proteins known as a histone@18#. In
the schematic depiction of the nucleosome, the DNA s
ment is represented as a spiral surrounding a cylinder.
Fig. 9. As a first step in our investigation of the stability
the spatial configuration of the segment of DNA that parti
pates in the nucleosome we will look at the stability of t

i-
he
of

i-
d.

of
e of
ts.

FIG. 8. A schematic representation of a nontrivial supercoi
configuration of DNA stabilized by a protein armature.

FIG. 9. Schematic of the nucleosome.
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ROYA ZANDI AND JOSEPH RUDNICK PHYSICAL REVIEW E64 051918
spiral solution to the energy extremum equations for a be
and-twisted rod.

Now, the spiral is a special, limiting case of the solutio
to the classical equation foru(s)5cosu(s). In this solution,
the equalityb5c holds, andu(s), which lies between those
two parameters in the classical solution is, thus, fixed at t
common value, which we henceforth callb. The complete
determination of the solution requires that we set the par
etera and choose signs in Eq.~4.13!. We find that there are
four possibilities for the solution, corresponding to the fo
choices of the two signs. Two of the solutions are for
left-handed spiral, and in the other two the spiral is rig
handed. In the case of the nucleosome, DNA is wrap
around the histone spool in a left-handed spiral. Given
sense of the helical solution, there the two alternative so
tions are spirals where the arclength of a single turn is ei
greater or less than 2pAF/A. The quantityAF/A is the per-
sistence length of the rod, and the only intrinsic length sc
in this system. If we rescale arclengths so that they are
pressed in units ofAF/A, then the rate of change of the Eul
anglef(s) in this classical solution is given by

df~s!

ds
5

Aa116Aa21

A2
. ~7.1!

The diameter of the cylindrical region encircled by the he
cal solution is given by

2A2

Aa116Aa21
sinu5A12b2A2~Aa117Aa21!,

~7.2!

while the distance between successive turns of the he
measured along the direction parallel to the cylinder’s a
is given by

2pA2

Aa116Aa21
cosu5A2p~Aa117Aa21!b. ~7.3!

The linear equation, the eigenvalues of which yield t
energies of fluctuations about the classical solution, is

2
d2F~s!

ds2
1~b2a!F~s!5lF~s!. ~7.4!

The parametera must be greater than one to ensure r
solutions to the classical equations, whileb5cosu lies be-
tween 1 and21. If the length of the spiral is allowed to
become infinite, then, in the absence of constraints, there
an infinite number of solutions to Eq.~7.4! with negative
values ofl.

Equation~7.4! is just the kind of equation for which on
might envision stabilization as the result of the imposition
a regular array of constraints. Here, we ask what phys
constraints will have the effect of stabilizing the extend
helix against fluctuations. One possibility is depicted in F
10. The vertical dark lines in the figure represent rods t
enforce a fixed spacing between a point on the spiral and
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point immediately above or below it. As shown in the figur
there are two ‘‘lines’’ of these rods, on opposite sides of t
spiral. As we will see, this arrangement proves sufficient
stabilize a family of spirals against fluctuations.

The requirement that the distance between a point on
spiral and a point separated from it by a single turn of
spiral, translates into the following requirement on a fluctu
tion, F(s)

E
s0

s01t

f~s!ds50. ~7.5!

Here, s0 is the location of the first point along the spira
while t is the ‘‘period’’ of the spiral, the backbone distanc
from a point on it to the point on~one turn of! the subsequen
spiral. In this case

t5
A2

Aa116Aa21
2p. ~7.6!

We will henceforth take the sign in Eq.~7.6! to be the upper
one, corresponding to the more tightly wound of the tw
branches. Then, the periodic set of constraints indicated
Fig. 10 leads to the following equation for the eigenvalues
the constrained spiral:

(
n52`

`
1

~k12nv!2@~k12nv!22~l1a2b!#
50, ~7.7!

where

FIG. 10. The constrained spiral.
8-8
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v5
2p

t
. ~7.8!

This equation is a specific realization of Eq.~6.6!, in which factors that are independent of the summation variablen have been
omitted. The sum in Eq.~7.7! can be performed with the use of contour integration. The equation that results is

pv cotS kp

2v
2

pAa2b1l

2v D 2pv cotS kp

2v
1

pAa2b1l

2v D 2p2Aa2b1l cscS kp

2v D 2

4~a2b1l!3/2v2
50. ~7.9!
-
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The minimum value of thel that solves this equation corre
sponds tok56v, at which point

l52a1b1v2

52a1b1S Aa111Aa21

A2
D 2

5b1Aa221. ~7.10!

A graph of (l1a2b)/v2 as a function ofk/v is shown in
Fig. 11. The constraints depicted in Fig. 10 will keep t
spiral in place against thermal fluctuations.

VIII. STABILIZATION OF A SINGLE NUCLEOSOME
IN A 30-nm SPIRAL-LIKE ARRAY

Here, we take the point of view that there is merit to t
notion of an organized and orderly array of nucleosome
the 30-nm spiral, and we search for this order in the solut
to the energy extremum equations for a bent-and-twisted
Interestingly, solutions that mimic a conjectured form of th
higher-order structure can be found. One such solution
depicted in Fig. 2. As previously noted, this solution bear
visual relationship to the coiling of DNA in a conjecture
form of the higher-order structure known as the 30-nm s
ral. The specific values of the parametersa, b, and c that
generate this configuration are

a51, ~8.1!

b50.656 009 130 822, ~8.2!

c520.85. ~8.3!

In this study, we focus on a particular portion of this stru
ture, corresponding to two loops in the distorted DNA stra

FIG. 11. The eigenvalue of the constrained fluctuation oper
in the case of interest here.
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This portion is illustrated in Fig. 12. Note that the loops a
not compact as in the standard picture of a nucleosome.
case here is a bit figurative, as we are interested in the no
of organization on a larger scale as envisioned in some
sions of the 30-nm spiral.

The ‘‘bare’’ stability of the two-loop portion of DNA was
calculated by assuming that fluctuations were consistent w
free boundary conditions, in which the slope of the fluctu
tions in the angleu(s) is set equal to zero at the two ends
the DNA segment. With these boundary conditions, we fi
that there are four unstable modes of the fluctuation oper
~3.1!, with potentialV(s) as given by Eq.~3.2!. The eigen-
functions associated with those fluctuations are shown in
13. In line with the discussion above, this implies the ne
for at least four constraints on fluctuations of the segmen
DNA that is wrapped about the histone in this configuratio
The construction of these eigenfunctions required an ela
ration of the integration method that we generally utilized
find the solution of the linear second-order equation that g
erns fluctuations about extremal solutions. This elabora
is discussed in Appendix B.

We choose to assume that the histone provides constr
in the most ‘‘efficient’’ manner, that is, that number of co
straints that follow from the presence of the histone does
exceed the minimum number required to guarantee stab
of the nucleosome configuration. Histones keep the t
loops close to each other and limit the arbitrary fluctuatio
of two loops with respect to each other. With this in min
we started by fixing the distance between two differe
points on the segment of DNA that wraps around the hist
octomer. As shown in the previous section, at least four c
straint functions are required to stabilize the nucleoso
structure.

Our strategy is to construct four constraint functions, ea
associated with fixing a different distance on a segmen

r FIG. 12. The portion of the compound spiral in Fig. 2 th
corresponds to a nucleosome in the 30-nm spiral.
8-9
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ROYA ZANDI AND JOSEPH RUDNICK PHYSICAL REVIEW E64 051918
DNA in nucleosomes. We are then faced with the problem
solving for zeros of the determinant of the matrixGkl . This
matrix is defined in Appendix A in Eq.~A6!. The operatorL,
is given by

L5
F~s!F~L2s!

F8~L !
. ~8.4!

Here,F(s) is an eigenvalue of the operator~3.1! that has the
propertyF8(0)50. The quantityL is the total arclength of
the nucleosomal segment.

As an initial attempt, we fixed four ‘‘diagonal’’ distance
between two loops. We fixed these distances only in thex-y
plane. We assume that the histone has a distorted cylind
shape, and this way we fixed the radius of cylinder in fo
different places. With this set of constraints, the DNA se
ment has some freedom to move vertically as long as
wrapped around the histone spool. In this case, we found
constraints only removed two negative eigenvalues and
system remains mechanically unstable. We then tried qu
few set of constraints related to keeping the segment of D
loosely on the histone octomer. A few of these sets of c
straints can be seen in the Fig. 18. None of these set
constraints was able to eliminate all negative eigenvalu
An example of the determinantuGklu, defined in Appendix A,
associated with one of the sets of inadequate constraint
shown in Fig. 14.

As indicated by the brief account above, the task of c
structing such constraints is by no means trivial. Four c
straints chosen at random, will not, in our experience, pr
adequate to the task of stabilizing the DNA segment aga
fluctuations. To understand the mechanism of removing
negative eigenvalue better, we constructed a five by five
trix with the same eigenvalues as the five lowest eigenva
of our problem. We let the computer choose four constra
randomly and ran the program many times. We were not a
to see even one case in which the constraints remove the
negative eigenvalues. The distance between the third ei

FIG. 13. The four unstable eigenvalues of the fluctuation ope
tor for the ‘‘nucleosome’’ configuration illustrated in Fig. 16. Th
associated eigenvalues are shown immediately below the grap
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value and fourth~as shown in the picture! is very large com-
pared to distance between other eigenvalues. As a result
not at all easy to find a set of constraints that eliminates
negative eigenvalues.

In the end, consideration of the detailed structure of
nucleosome, and a knowledge of the nature of the perio
constraints that stabilize a long spiral of DNA, led to fo
constraints that give rise to mechanical stability@21#. Three
of the four constraints corresponded to rods that stabilize
segment against motion parallel to the~curved! axis of the
histone, and the fourth is in the form of a ‘‘diagonal’’ stru
reaching nearly across the double-looped segment. In m
detail, the constraints correspond to rigid, but hinged ro
that join points in the nucleosomelike segment as follows

~1! The diagonal strut reaches from a quarter of the w
in the first loop, to a quarter of the way from the end of t
second loop. This is the long, diagonal support illustrated
Fig. 15. Note that the picture of the nucleosome here is fi
rative, in that the ‘‘real’’ histone, as shown in Fig. 16, has
curved axis, so as to fit into the loops of the nucleosom
DNA.

~2! The second support runs parallel to the axis of
histone, from a quarter in the first loop to a quarter in t
second. This is the topmost horizontal support in Fig. 15

~3! The third support, also parallel to the axis of the h
tone, extends from the halfway point of the first loop to t
halfway point of the second loop.

~4! Finally, the fourth support, which, like the second a
third ones, runs parallel to the histone’s axis, joins the po
three quarters of the way into the first loop to the poin
quarter of the way into the second loop from the oppos
end. This is the bottom horizontal support in Fig. 15.

The equation for eigenvalues of the fluctuation spectru
now has the form of the characteristic equation of the app
priate version of the matrixGkl displayed in Eq.~A6!. The
determinant of this matrix, as a function of the eigenva
parameterl, is shown in Fig. 17. The zeros of the determ
nant occur at the eigenvalues of the constrained fluctua
spectrum. We note that there are no negative roots for ne
tive values ofl. The poles that appear in the plot lie at th
locations of the eigenvalues of the unconstrained spectr
The four negative energies are readily identified in the figu

-

.

FIG. 14. A determinant associated with one of the constra
that does not stabilize the nuclesome configuration illustrated
Fig. 16. Note that this determinant passes through zero as a fun
of l for l,0. Recall that zeros of the determinant are proportio
to energy eigenvalues of the fluctuation operator.
8-10
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CONSTRAINTS, HISTONES, AND THE 30-nm . . . PHYSICAL REVIEW E64 051918
It is worth noting that the stabilization leaves the segm
with a positive eigenvalue that lies close to zero. In oth
words the four constraints that were utilized were adequ
to achieve mechanical stability, but only barely so.

As noted above, the choice of the four constraints that
to stability of the nucleosomal configuration, was guided
known properties of the histone octamer. A variety of inve
tigations has revealed the existence of a spiral ‘‘trough’’
the surface of the histone@3,19,20#. Such a trough will act to
constrain wrapped DNA against movement along the surf
of the histone spool that is parallel to that spool’s axis.
particular, the section of DNA that is wrapped about t
histone spool will not be allowed to move in such a way as
alter the distance between adjacent coils, when that dista
is measured along a direction parallel to the spool axis
addition, we were guided by the results reported in Sec. V
in which it was demonstrated that an extended spiral is
bilized by a periodic array of constraints equivalent to a
of rigid, but hinged, rods separating consecutive turns of
spiral as indicated in Fig. 10.

From investigations of the chemical electrostatic and c
formational structure of the histone octamer, it is clear t
the points of contact between the histone and the D
wrapped around it exceed the minimal number that, acco
ing to our results, stabilize the DNA segment against m
chanical instabilities. However, it is satisfying that a ‘‘min
mal’’ set of constraints will also do the job. The significan
of this result for the mechanics and biology of the nucleso

FIG. 16. The nuclesome configuration in this case. Note
‘‘histone’’ is in the form of a curved cylinder. The curvature is us
to fit into the two-loop structure that we investigate here.

FIG. 15. A figurative version of the actual set of constraints t
were utilized in this set of calculations. In this picture, the ‘‘hi
tone’’ has been straightened out to resemble the cylindrical sh
that it actually takes.
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configuration remains to be worked out. Nevertheless, it
long been known that a few points of contact between DN
and the histone spool suffice to stabilize the nucleoso
@22#. We believe that issues of optimal efficiency will prov
relevant in discussions of the nuclesome in eukaryo
chromatin.
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APPENDIX A: THE INFLUENCE OF CONSTRAINTS ON
THE FLUCTUATION SPECTRUM:

GENERAL RESULTS

The mathematical effects of constraints on the fluctuat
spectrum of the operator~3.1! are readily expressed in term

e

t

pe

FIG. 17. The determinant yielding the eigenvalues of the c
strained fluctuation spectrum for the case of the constraints on
two loops in Fig. 12 that are described in Sec. VIII. Note that t
determinant as function ofl does not pass through zero for anyl
,0. Given that zeroes of the determinant are proportional to ene
eigenvalues of the constrained fluctuation operator, we are ass
that the nucleosome configuration is stabilized against mechan
fluctuations.

FIG. 18. A figurative depiction of some of the constraints th
were found to not stabilize the ‘‘nucleosome’’ configuration agai
fluctuations.
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ROYA ZANDI AND JOSEPH RUDNICK PHYSICAL REVIEW E64 051918
of the roots of a determinant. Here, we outline the way
which this formulation of the stability investigation is arrive
at. The discussion in this section has appeared before@16#. It
is repeated here for the convenience of the reader.

The investigation of the stability of a solution to a Eule
Lagrange equation, such as the one relevant to the con
rations of interest to us here, can be framed in terms of
eigenvalue spectrum of a linear operator. This, in turn,
be recast in terms of the problem of finding extremal valu
for the expectation value

^juLuj&, ~A1!

whereL is the linear operator. In the case at hand,L is the
operator in Eq.~3.1!. The constraints are equivalent to r
quiring that thej, between which the operator is sandwiche
is orthogonal to a set ofm x ’s. There is also the constraint o
the absolute magnitude ofj. The constraints are of the form

^juj&51, ~A2!

^jux l&50. ~A3!

In Eq. ~A3!, the indexl runs from 1 tom. The equation for
the extremum of the quadratic form~A1!, subject to the con-
straints~A2! and ~A3!, takes the form

Luj&5luj&1(
l 51

m

L l ux l&. ~A4!

The coefficientsl and L l are Lagrange multipliers, which
enforce the constraints to which the system is subject.
solution to the above equation is

uj&5(
l 51

m
L l

L2l
ux l&. ~A5!

The Lagrange multipliersL l must now be adjusted to ensu
the orthogonality requirements. These requirements ar
the form

05(
l 51

m

L l K xkU 1

L2l Ux l L [GklL l . ~A6!

This set ofm equations for the Lagrange multipliersL l has
nontrivial solutions only if the determinant of them3m ma-
trix G is zero. The equationuGjku50 represents a conditio
on the parameterl.

Now, given a solution to Eq.~A6!, we take the expecta
tion value ^jLj&. Substituting from the right-hand side o
Eq. ~A6!, we find for this expectation value
05191
u-
e
n
s

,

e

of

(
l 51

m K jUL L l

L2l Ux l L 5(
l 51

m K jU~L2l!
L l

L2l Ux l L
1l(

l 51

m K jU L l

L2l
x lU L

5(
l 51

m

L l^jux l&1l^juj&5l.

~A7!

In Eq. ~A7! we have made use of the orthogonality ofj to
thex l ’s. We are also assuming that the functionj is normal-
ized. Thus, in solving for the value ofl that satisfies Eq.
~A6! we are also determining the effective values of the
genvalues of the constrained problem.

APPENDIX B: TRANSFER MATRIX

When we are dealing with deep potential wells and la
negative eigenvalues, the usual numerical integration o
differential equation over long intervals gives an erroneo
result. The reason is that as we integrate along a given p
the error starts growing exponentially, and the longer
distance is, the more unreliable the final answer is. To av
this, we only integrated numerically over half of a loop a
with the help of the transfer matrix, we calculated the eige
functions in other regions. If we have a potential in the
terval 0<x<L, and if the potential has reflection symmet
aboutx5L/2, we can express a solutionc(x) and its deriva-
tive at x5L/2 in terms of the two ‘‘primary’’ functions,
F1(x) andF2(x), and their derivatives, atL/2, as follows:

S c~L/2!

c8~L/2!
D 5S F1~L/2! F18~L/2!

F2~L/2! F28~L/2!
D S c~0!

c8~0!
D[TS c~0!

c8~0!
D .

~B1!

Here, the functionsF1(x) andF2(x) satisfy the equation in
the interval. They also satisfy the boundary conditions

F1~0!51, ~B2!

F18~0!50, ~B3!

F2~0!50, ~B4!

F28~0!51. ~B5!

To find the function at the end of the interval,x5L, we
reverse its sign in the middle and multiply byT21, that is

S c~L !

c8~L !
D 5RT21RTS c~0!

c8~0!
D , ~B6!

where

R5S 1 0

0 21D . ~B7!
8-12
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Effectively, we have a potential of the form of Fig. 3 and
interval equal to 2L.

To get anywhere along two loops, we use the appropr
combination of the above transfer and slope-reversing m
ces. It is useful to construct a look-up table of the ‘‘fra
tional’’ transfer matrixt(x), where

t~x!5S F1~x! F18~x!

F2~x! F28~x!
D , ~B8!

where 0<x<L/2. With the use of this matrix, we can con
struct solutions throughout the interval. For instance, to
tain the solution in the intervalL/2<x<L, one makes use o
the following relationship:
u

05191
te
ri-

-

S c~x!

c8~x!
D 5Rt~L2x!RT21RTS c~0!

c8~0!
D . ~B9!

Or, to obtain the solution in the interval 3L/2<x<2L, one
utilizes

S c~x!

c8~x!
D 5Rt~2L2x!RT21RTRT21RTS c~0!

c8~0!
D .

~B10!

Equation~B10! may appear very complex. However, it sav
a considerable amount of computational time and leads
reliable answer. One good measure of the accuracy of
answer is the Wronskian of the two independent solutions
the differential equation, which was found to be constant,
expected, along the interval.
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